
CHAOTIC HOMOGENEOUS POROUS MEDIA.
4. HEAT EXCHANGE IN A CELL
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An analytical study is made of a change in the intensity of heat exchange in a cell in passage from an or-
dered permeable system to a chaotic system.

One possible mathematical definition of a cell of a porous structure has been given in [1]. In the present
work, we employ for the first time a structural method associated with the transformation of an ordered system where
the notion of a cell is evident to a chaotic system. The object of investigation is a system of rods in longitudinal flow
(Figs. 1 and 2). For such a model the characteristics of heat exchange in a cell in a steady-state stabilized regime are
computed analytically. Furthermore, the analysis presented can be employed in calculating compact heat exchangers or
nuclear-reactor cores.

Ordered System. In flow past parallel cylinders, there is no macrodispersion [2], and the laminarity condition
makes it possible to eliminate transverse turbulent transfer; therefore, we will represent the cell in pure form without
distortions. We consider two cases of heat exchange in the cell — with a Poiseuille velocity profile and a uniform
(rod-shaped) profile — for an ordered system (Fig. 2a).

Poiseuille Flow. The hydrodynamic and heat-exchange problems for an ordered system of uniformly heated
cylinders have been solved simultaneously in [3, 4]. The solution was obtained in the form of rapidly converging se-
ries. The Nu number was determined for 1.001 ≤ h ⁄ dp ≤ 4.0. It has been shown that when h ⁄ dp ≥ 1.5 any ordered con-
figuration (triangular, square, hexagonal) of the system of cylinders can be replaced by an equivalent circular (ring)
channel surrounding a cylinder. The error in calculating the Nu number does not exceed 5%. For the porosity Π the
equality

Π = 1 − 
π
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h
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 , (1)

holds, which yields the condition of existence of a cell with a circular channel: Π ≥ 0.6. The dimension of the cell
di is determined by the relation

dp
2

di
2
 = 1 − Π . (2)

Despite the geometric simplicity of the cell under study, the Nu number is calculated from a very cumbersome for-
mula which is not given here. Below we will graphically represent the results of calculation of Nu (they have been
obtained in [4]). The structure is homogeneous; therefore, the average value is sNut = Nu and the average porosity is
Π
__

 = Π. The characteristic dimension is dp; the hydraulic diameter for the system of rods in laminar flow is not used
[4, 5].

Core Flow. Use is made of a cell with a circular channel of Π ≥ 0.6 but with a uniform velocity profile (Fig.
3). The use of core flow for small Pe is substantiated in [6] in investigating heat exchange in microchannels.

The Nu number for the cell (see Fig. 3) can be determined in the regular manner: the simplest one-dimen-
sional equations of transfer of heat are solved separately for the rod and the liquid, the conditions of conjugation at
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the phase boundary and the heat insulation of the external boundary of the circular channel are employed, etc. But tak-
ing into account the stepwise character of heat-releasing and velocity fields, we can calculate Nu in a different manner.
In this method, one uses a mathematical formalism of internal heat exchange in a porous medium. We introduce the
characteristic function θ(r) equal to unity if r is in the liquid region and to zero if r is in the solid body. Then the
equation of heat transfer for the entire cell 0 ≤ r ≤ ri (di = 2ri) has the form
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The condition of a stabilized regime is −cm
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equation of convective heat exchange is
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The average temperatures T
__

 and t
_
 are determined from the formulas
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Fig. 1. Flow pattern.

Fig. 2. Ordered (a) and chaotic (b) systems of cylinders.
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We integrate Eq. (3); then, with account for (4) and (5), we obtain
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Expression (6) is an analog of the Lyon integral for the coefficient of internal heat exchange.
Since the specific surface of the cylinders is Sv = 4(1 − Π)/dp and αv = Svα and λs >> λg, from (6) we have

1

Nu
 = − 

ln (1 − Π)

4Π2  − 
1

4Π
 − 

1

8
 . (7)

Chaotic System. Computation of the intensity of heat exchange in a chaotic system of rods in longitudinal
flow, in addition to its being of independent importance, will enable us to represent a substantially modified cell. The
inhomogeneity of the structure (Fig. 2b and Fig. 4) assumes the employment of probability methods for determination
of the average values of the physical quantities, including the sNut number.

Formulation of the Problem. In the system of disordered cylinders, the ordinary steady-state equations of heat
exchange

∇  (cρuτ + q) = qv ,   q = − λ ∇ τ . (8)

hold. The thermal conductivity λ of the structure is prescribed by the characteristic function θ(r) analogously to (3).
The heat exchange is stabilized; therefore, we consider a plane problem and carry out all the averagings over the area;
the fields of velocities and heat release are stepwise, such as those in core flow in the ordered system.

We average Eqs. (8) over the ring Sr = 2πr∆r with the center at any point of the system (Fig. 4), using the
method of [7]. The thickness of the ring is ∆r << r, but for r ≥ R0, where R0 is a fixed radius which is as large as is
wished, the ring contains a set of cylinders. Therefore, from (8) we obtain
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Fig. 3. Diagram of a thermal cell in a homogeneous structure of parallel heat-
releasing cylinders in core flow of the coolant.
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1 − Πr

1 − Π
__  qv = αv,r (Tr − tr) . (10)

The condition of a stabilized regime is

− cm
.
 
∂tr
∂x

 = qv . (11)

In Eqs. (9)–(11) and in Fig. 4, use is made of the following quantities:

Πr = 
1
Sr

  ∫ 
r
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2π

 θ (r, ϕ) rdrdϕ , (12)
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The parameters λr and αv,r will be determined below. The variables Πr, tr, and Tr enable us to compute the true av-
erage values Π

__
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_
(R), and T
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Fig. 4. On the derivation of the equation of heat exchange in a chaotic system
of parallel cylinders.
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We have selected the ring Sr as the object of averaging since, first, in this case we can easily find the aver-
age values of the true temperatures of the cylinders and the coolant and, second, in such an averaging, the heat
sources and sinks on the plane are not deformed and retain their position.

Further algorithm of solution of the problem is as follows: we solve Eqs. (9) and (10) determining the tem-
peratures tr and Tr, find the average Π

__
(R), t

_
(R), and T

__
(R) from formulas (15)–(17), and compute the difference T

__
(R) –

t
_
(R) which is averaged over the ensemble for the entire plane R → ∞.

Solution of the Problem. From Eq. (9) with account for (11) we obtain
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Integrating (18), we have
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The temperature of the cylinders in the ring Tr is determined from (10). From formulas (15)–(17) we find the differ-
ence T

__
(R) – t

_
(R), using, where necessary, the integral mean-value theorem:
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In porosity averaging, the terms with C1 cancel out; therefore, they will not be taken into account in what follows.
For the convenience of computations we introduce the following notation:
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then for the two remaining integrals in (20) we obtain
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Averaging (20) with account for (21), we have
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According to [8], the dispersion of the porosity is D[Π
__

(r)] = Π
__

(1 − Π
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)
dD

2

4(r2 − R0
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.

Integrating (22) and passing to the limit when R → ∞, we obtain
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qvdD
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16Π
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qv
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For the average coefficient of internal heat exchange sαvt the relation

qv = sαvt (sT
__
t − st

_
t) ,

which is analogous to (10), holds; therefore, we finally obtain

1
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dD
2

16Π
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) sλrt
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1

sαv,rt
 . (24)

The dispersion diameter dD formally introduced in [8] as the linear dimension characterizing the geometric
dispersion of the porosity D[Π] acquires a physical meaning — the heat exchange in an inhomogeneous permeable
structure substantially depends on this parameter.

Analysis of the Results for the Chaotic System. A thermal cell in a chaotic system of similar cells occupies
the entire plane in contrast to the ordered system where the isolated cell surrounds the cylinder.

The most reliable and widespread formula for the transverse effective thermal conductivity sλrt is that of
Maxwell and Wiener [9, 10]. The thermal conductivity of heated cylindrical inclusions is λs >> λg; in this case the
Maxwell–Wiener formula has the form

sλrt = 
2 − Π

__

Π
__  λg . (25)

We have

sαvt = sSvt sαt ,   Nuv = 
αvdp

2

λg

(26)

The average specific surface is

sSvt = 4 (1 − Π
__

) ⁄ dð ,   sNuvt = 4 (1 − Π
__

) sNut . (27)
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From formula (24), we finally obtain

1
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1
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 + 
1
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Here sNurt is the average local number Nu in the ring Sr = 2πr∆r. In [2], it has been shown that we have dp = dD
for Π

__
 ≥ 0.6; therefore, we obtain

1
sNut

 = 
1

4 (2 − Π)
 + 

1
sNurt

 . (29)

In deriving Eqs. (9)–(29), we have disregarded the molecular thermal conductivity of the coolant along the flow as
compared to the convective component.

Average Local Coefficients of Heat Exchange sαrt and sαv,rt and sNurt and sNuv,rt Numbers for the Cha-
otic System. It is axiomatic that the heat-transfer coefficient of an inhomogeneous structure sαrt differs from the quan-
tity α in an ordered system. We note that the ring Sr = 2πr∆r contains a fairly large number of cylinders, which is
necessary for averaging of the heat-exchange parameters.

One model determining the values of sαrt, sαv,rt, sNurt, and sNuv,rt and developed by V. I. Subbotin and
V. V. Kharitonov [11, 12] is based on the relation of the hydraulic resistance to the coefficient of internal heat ex-
change of a porous structure. But this semiempirical theory has been constructed for a developed turbulent flow and
will not be used for the case under study.

Another, more general, model explaining the difference of sαrt for a chaotic system from the heat-transfer
coefficient α in an ordered structure is the theory of convective diffusion or small-scale dispersion, whose mechanics
and mathematical apparatus have been investigated in the works of V. N. Nikolaevskii, Yu. A. Buevich, M. I.
Shvidler, and M. Kaviany (see [13]). A bibliography of earlier works on dispersion theory can be found in [14, 15].
The assumption that the average of the products of velocity and concentration (temperature) pulsations is an additional
pulsation material (heat) flux proportional to the gradient of the average concentration (temperature) is employed in the
theory of convective diffusion in averaging local equations of transfer in an individual pore (small scales) but with al-
lowance for fluctuations of the velocity and concentration fields. The proportionality factor is the convective-diffusion
tensor dependent on the vector of the average velocity.

Fig. 5. Intensity of heat exchange in chaotic (a) and homogeneous (b) systems
of cylinders: 1) core flow of the coolant; 2) Poiseuille flow.
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Small-scale dispersion effects act in macroregions where there are correlations between the hydrodynamic pa-
rameters, i.e., the linear dimensions of such portions are smaller than the macromixing length ∆r < lM [2]. Employing
the experimentally determined relations between the hydraulic resistance, the average velocity of the flow, and the
heat-transfer coefficients, Buevich and Ustinov [16] have shown that the difference of sαrt, sαv,rt, and sNurt from
the corresponding quantities for a homogeneous structure does not exceed 30%. Since the decrease in the total average
intensity of heat exchange in a chaotic structure of parallel cylinders is considerable (a decrease of 280% for the core
flow and of 230% for the Poiseuille flow when Π

__
 = 0.6, Fig. 5, formula (29)), for a not very rough evaluation we

can set sαrt = α, sαv,rt = αv, and sNurt = Nu. We note that for small Pe numbers the increase in the effective ther-
mal conductivity will be insignificant and tending to zero, which enables us to employ the Maxwell–Wiener formula
(25).

Thus, the chaotic nature of the structure of cylinders in longitudinal laminar flow decreases the intensity of
stabilized heat exchange 2 to 3 times.

It is clear that, in contrast to the thermal cell, the hydrodynamic cell changes only slightly — within the
small-scale-dispersion model — in passage to an inhomogeneous structure.

In the chaotic spherical packing, we have Π
__

 = 0.37–0.4 and the hydraulic diameter is equal to the dispersion
diameter [8]. Employing the Maxwell formula for spherical inclusions [9] and dependence (24), we can easily show
that the intensity of heat exchange for the laminar flow changes only slightly and is totally determined by correlation
corrections for the small-scale inhomogeneity.

In all the examples considered, we have disregarded macrodispersion; at a later time, we will show a sub-
stantial influence of the continuum of the macrodispersion M [2] on the formation of temperature fields and the inten-
sity of internal heat exchange.

NOTATION

h, distance between the centers of the cylinders in an ordered system, m; r and d, radius and diameter, m; S,
area, m2; Π, dimensionless porosity of an ordered structure, coincident with the average porosity Π

__
 of a disordered

structure; Nu and sNut, dimensionless Nusselt numbers for a homogeneous system and a chaotic system; Pe, dimen-
sionless Pe′clet number; x, r, ϕ, components of the cylindrical coordinates, m, m, rad; θ(r), θ(r), and θ(r, ϕ), dimen-
sionless characteristic functions; λ, thermal conductivity, W/(m⋅K); T and t, temperatures of the cylinders and the
coolant, K; qv, power of the specific heat sources, W/m3; c, specific heat at constant pressure of the coolant, J/(kg⋅K);
m
.
, specific flux of the coolant, kg/(m2⋅oC); α, heat-transfer coefficient, W/(m2⋅K); αv, coefficient of internal heat ex-

change, W/(m3⋅K); ρ, density of the coolant, kg/m3; u, velocity field of the coolant, m/sec; q, heat flux, W/m2; τ, con-
tinuous temperature field of the entire structure, K; ∆r, thickness of the ring, m; R0 and R, initial and final radii of
the ring of averaging of the entire system, m; C1 and C2, integration constants; Π

__
(R), t

_
(R), and T

__
(R), average values

of the corresponding quantities for the ring R0 ≤ r ≤ R; r0, intermediate radius from the integral theorem, m; D[Π
__

(r)],
dimensionless dispersion of the porosity; λr, effective transverse thermal conductivity of the chaotic system of parallel
cylinders with a coolant, W/(m⋅K); lM, macromixing length, m; M, macrodispersion continuum; sT

__
t, value of the

quantity T, for example, of the temperature averaged over the area (bar) and the ensemble of configurations of systems
of chaotic parallel cylinders (angle brackets), for the porosity Π

__
 = sΠ

__
t. Subscripts: p, particle; r, relating to the quan-

tities averaged in the ring Sr = 2πr∆r; i, relating to the quantities in the thermal cell; s, for solid cylinders; g, for the
coolant; v, relating to the quantities in unit volume; D, relating to the quantities determined by the dispersion of the
porosity D[Π]; M, relating to the values of the macrodispersion continuum.
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